
The Heaviest Elements

Prof. Cody Folden June 20, 2012

Let's set the stage.

They keep finding new elements. Where are they?

• Ytterby, Sweden is the namesake of four elements: ytterbium, yttrium, erbium, and terbium.

Outline

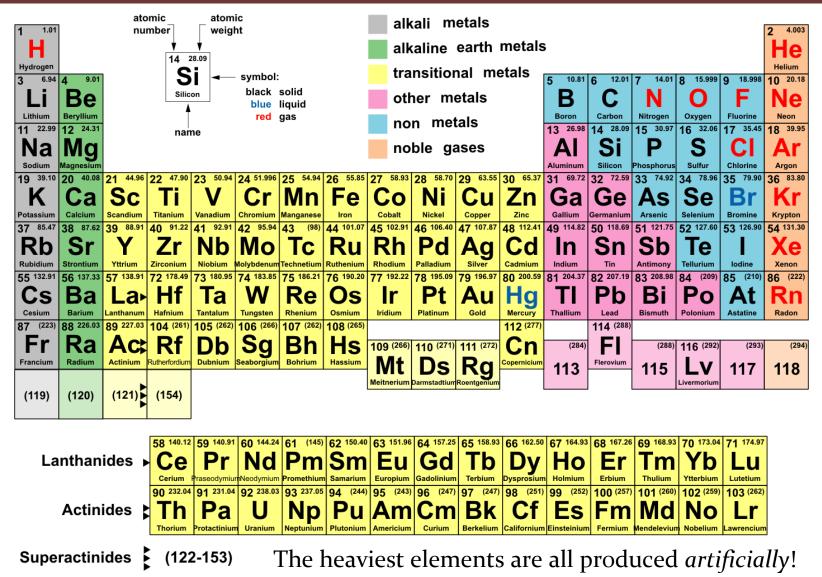
- The Elements as They Stand Today
- Nuclear Reactions Used to Make the Heaviest Elements
- The So-Called "Island of Stability"
- How are the experiments performed?
- How do you study chemistry with only a few atoms?
- The Future of New Elements

The Elements as They Stand Today

- There are 91 naturally occurring elements (but it depends on how you count them).
 - The heaviest element that occurs in large quantity is uranium (atomic number 92). You can mine it like gold.
 - Technetium (atomic number 43) does not occur naturally.
 - Promethium (atomic number 61) does not occur naturally.
 - ²⁴⁴Pu *has* been discovered in nature! This isotope has a half-life of "only" 80 million years.
- The artificial elements bring the total to 118.

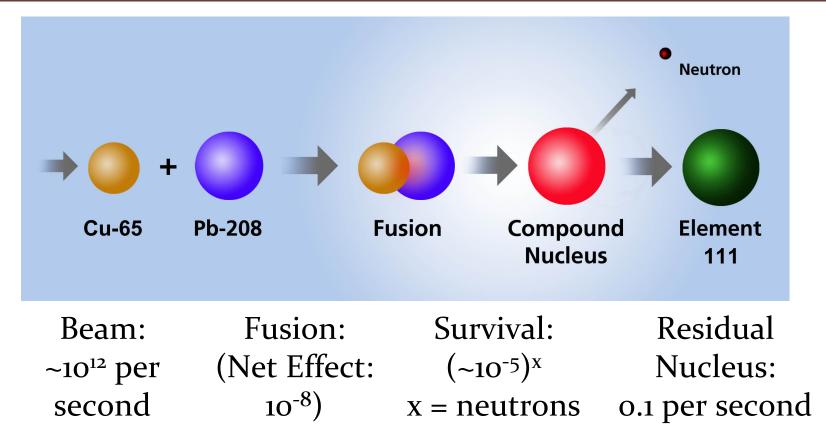
²⁴⁴Pu in Nature (1971)

Detection of Plutonium-244 in Nature


D. C. HOFFMAN & F. O. LAWRENCE Los Alamos Scientific Laboratory, University of California, Los Alamos, New Mexico

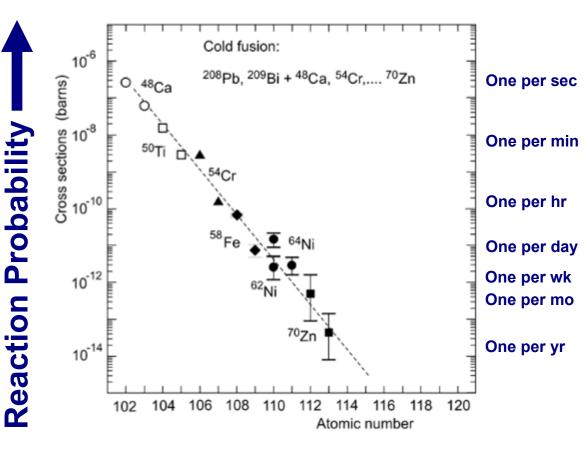
J. L. MEWHERTER & F. M. ROURKE General Electric Company, Knolls Atomic Power Laboratory, Schenectady, New York

- Sample: 1.0 × 10⁻¹⁸ g ²⁴⁴Pu per gram of sample.
- Crust: 5 × 10⁻²⁵ g ²⁴⁴Pu per gram of Earth.
- There is an extremely weak "rain" of ²⁴⁴Pu that falls on the Earth, creating an *equilibrium* that balances its radioactive decay.


The Periodic Table 2012

Why study heavy elements?

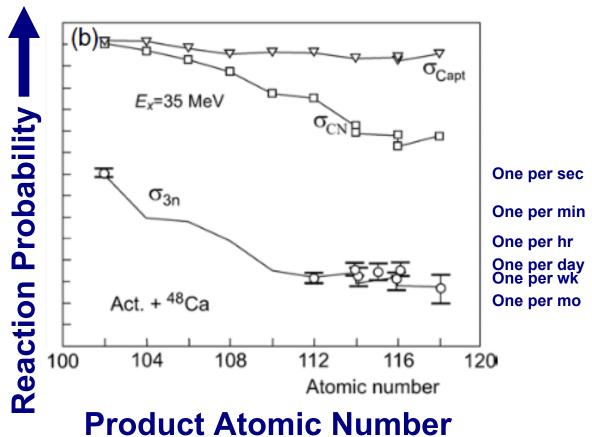
- Studies at the extremes of nuclear stability.
- Chemistry at the limits of the periodic table:
 - What is the influence of relativistic effects?
 - Does the periodicity of the elements hold?
 - The chemistry of the elements is the most fundamental goal in chemistry.
- Interplay of chemistry and physics.


How does the nuclear reaction work?

 In reality, it's not that easy. There is an additional nuclear physics issue that reduces the rate by another 10⁻⁵.

Element Discoveries: Cold Fusion

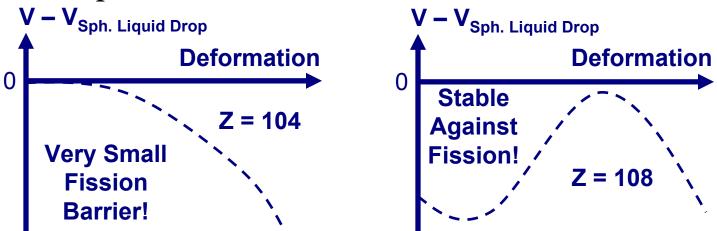
- Cold Fusion relies on "shell stabilized" targets.
- Production rates decrease sharply as atomic number increases.
- These reactions were preferred ca.
 1980-1997.



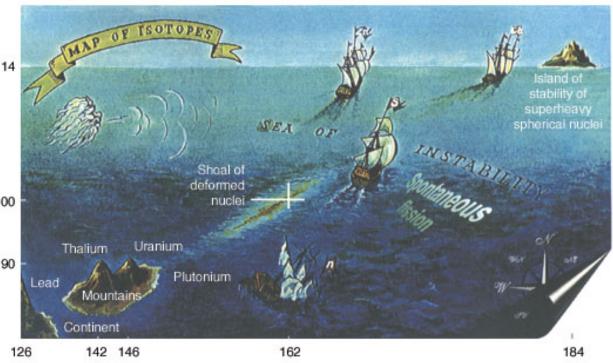
Product Atomic Number

Yu. Oganessian, J. Phys. G **34**, R165 (2007).

Element Discoveries: Warm Fusion

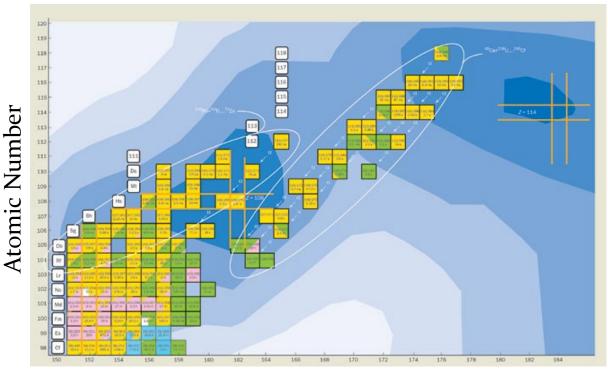

- Cold Fusion relies on "doubly magic" ⁴⁸Ca beams.
- Production rates almost flat as atomic number increases.
- These reactions are preferred ca.
 1998-present.

Yu. Oganessian, J. Phys. G **34**, R165 (2007).


Shell Corrections

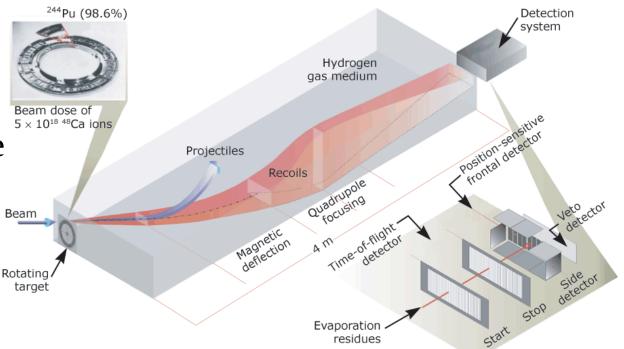
- Next major spherical shell above *Z* = 82, *N* = 126 is variously predicted to occur at:
 - Z = 114 and N = 184 (Sobiczewski).
 - *Z* = 120 and *N* = 172 (Greiner).
 - *Z* = 126 and *N* = 184 (Meldner, Ćwiok).
- There is a known deformed subshell at *Z* = 108 and *N* = 162. This is why we can form element 108, for example.

The "Island of Stability"

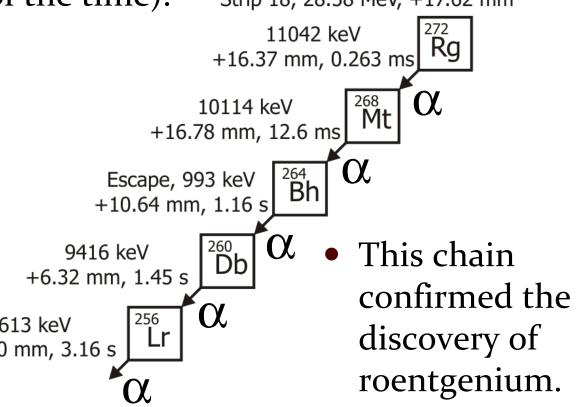

- The "Island of Stability" is a way of stating a theory that there may be a region of nuclei that might have very long half-lives (years or more). Most heavy elements have half-lives of less than a few seconds.
- Theoretical nuclear physicists¹¹⁴ have been speculating on the location of the location of 100 the Island since 1967 and it is still ⁹⁰ not certain!

Neutron number

Can we actually reach the "Island of Stability"?


- The crosshairs on the right show where the Island *might* be located. The known isotopes are shown as squares. Unfortunately, it is not likely that we can reach this location with current technology.
- The problem is that we need higher ratios of protons to neutrons that are not available with current beams and targets.

Neutron Number

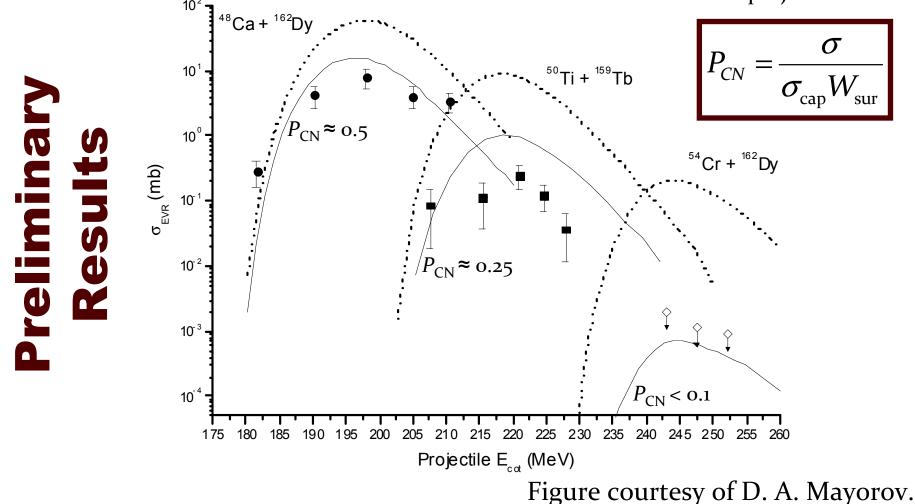

How do the experiments work?

- We use very intense beams, rotating target wheels (to spread out the heat), and a *separator* to filter away the projectiles after the reaction. Beamtimes can last as long as one month or more.
- The separator removes the beam because exposing it to the ultra-sensitive detectors would damage them remanently.

How do we know when we have made one of these elements?

- We observe rare isotopes through their radioactive decay. We can observed several decays and recreate the *decay chain*, which identifies the parent nucleus definitively. (Most of the time). Strip 18, 28.58 MeV, +17.62 mm
- Many heavy isotopes decay by alpha particle emission. This is easy to detect and tells you the exact relation 8613 keV between the +14.60 mm, 3.16 s chain members.

Criteria for a New Element

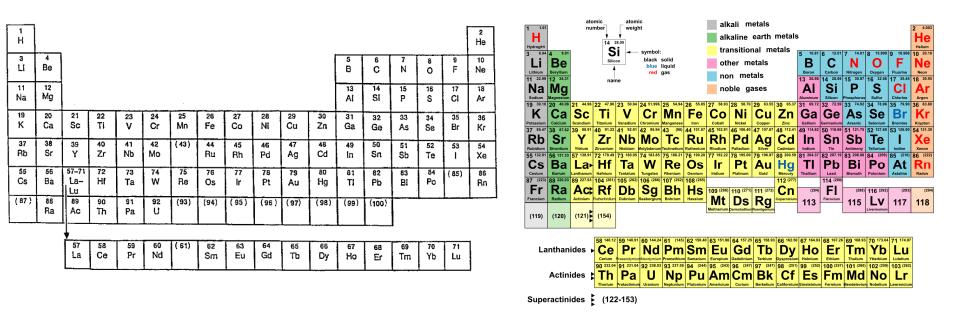

- Must exist for approximately 10⁻¹⁴ s. This is roughly the time needed for a nucleus to collect a cloud of electrons.
- The atomic number must be different from all known atomic numbers, beyond a reasonable doubt. It does *not* have to actually be determined, though.
- The same goes for the mass number.
- Physical or chemical methods can be used.
- Confirmatory experiments are preferred.
- Giving it a name immediately is discouraged.
- In reality, these criteria have not stopped arguments about who discovered what. They can last for years.

The Future of New Elements

- There were two attempts to discover element 120 in 2011 at GSI (Germany):
 - ${}^{54}Cr + {}^{248}Cm \rightarrow {}^{298}120 + 4n$
 - ${}^{50}\text{Ti} + {}^{249}\text{Cf} \rightarrow {}^{295}\text{120} + 4n$
- The success of these experiments likely depends on two factors:
 - The probability that the two nuclei will fuse.
 - The size of the fission barrier.
- All theoretical predictions indicate very low production rates in either case.

Experimental P_{CN} Values

• $P_{\rm CN}$ decreases substantially with increasing $A_{\rm proj}$.



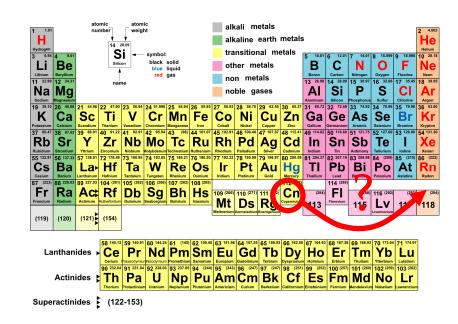
Implications for Reactions with Projectiles Heavier Than ⁴⁸Ca

- The change from ⁴⁸Ca to ⁵⁰Ti or ⁵⁴Cr affects the cross section:
- Good Things:
 - $\sigma_{\rm cap}$ is flat at best.
 - Slight increase in separator efficiency.
- Bad Things:
 - Substantial decrease in *P*_{CN}.
 - Substantial decrease in W_{sur} .
 - (Possibly) slight decrease in beam intensity.
- We may discover elements 119 and 120, but after that it is going to be very difficult.

What has heavy element chemistry told us?

- The chemistry of the heavy elements has been critical to our understanding of the periodic table.
- Glenn Seaborg developed the *actinide concept*, which places certain elements in a separate *actinide series*.

Pre-World War II Periodic Table

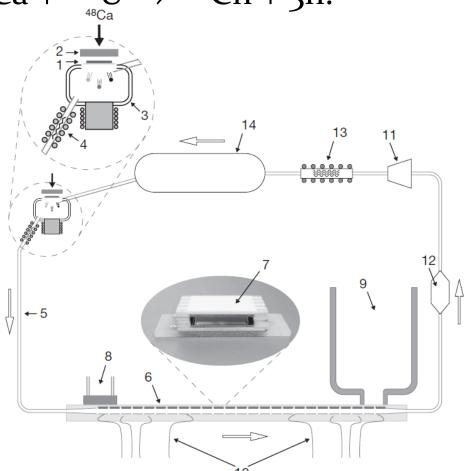

Modern Periodic Table

What can heavy element chemistry tell us?

- More recently, we have begun to wonder whether the periodic table still works for very high atomic numbers. (It's not guaranteed).
- The problem is *relativistic effects*, the result of the fact that all the positive charge in the nucleus can accelerate the electrons to speeds near the speed of light.
- The relativistic effects change the electron orbitals and the chemical properties of the heaviest elements.
- We can study this by comparing the chemical properties of the artificial elements with their lighter *homologs*.
- We need to produce the transactinide, then measure some property, and do the same for the homologs.

Relativistic Effects and Copernicium (Z = 112) Chemistry

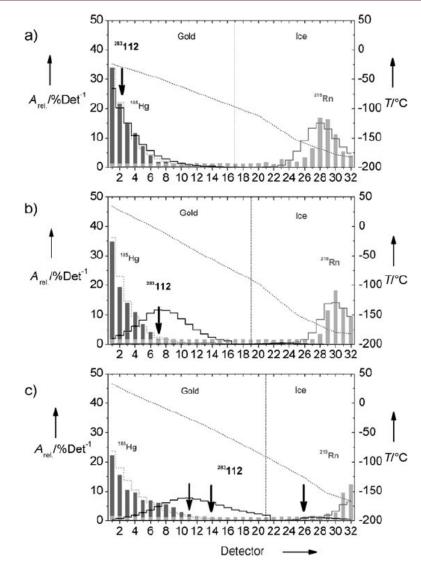
- The effect is that *s* and *p* orbitals are contracted and stabilized, while the *d* and *f* orbitals are expanded and destabilized.
- For Cn, this may mean that the filled 6d¹⁰ shell may behave like the filled 6s²6p⁶ orbitals of a noble gas.
- Does Cn behave chemically like the noble gas radon or like its periodic table homolog mercury?


Modern Periodic Table

How does a transactinide chemistry experiment work?

- We want to compare some transactinide chemical property to that of its lighter homologs.
- We have billions and billions of atoms of a homolog available (remember that 1 mol = 6.022×10^{23} atoms), but only a few of the transactinide for comparison.
- We have to be clever!
- Step 1: Use a nuclear reaction to make the transactinide.
- Step 2: Possibly use a chemical reaction to make a compound of this transactinide. Dimers are not allowed.
- Step 3: Measure the radioactive decay of the heavy atom.
- Use the data to extrapolate to macroscopic quantities.

Copernicium Chemistry Setup


- The nuclear reaction is ${}^{48}Ca + {}^{238}U \rightarrow {}^{283}Cn + 3n$.
- The reaction products are stopped in a mixture of He and Ar.
- They go through a purification step into a closed-loop system with minimal oxygen and water.
- The main component is *thermochromatography column*.

R. Eichler *et al.*, Nature (London) **447**, 72 (2007).

Copernicium Chemistry Results

- The experiment was designed to produce Cn, Hg, and Rn at the same time.
- Hg is not volatile and deposits even at high temperatures.
- Rn is volatile and only deposits at low temperatures.
- Cn is somewhere in between.

Simulation and Results

- Once you have the experimental data, you do a *Monte Carlo simulation* of the experiment that takes into account the geometry of the channel, the temperature profile, and the observed decay chains.
- The simulation tells you the *adsorption enthalpy* of the metal on the detector surface (Au) that is most likely to give you the observed distribution.
- Hg: $\Delta H_{ads} = -98 \pm 3 \text{ kJ/mol}$ Rn: $-27 \pm 3 \text{ kJ/mol}$
- Cn: $\Delta H_{ads} = -52 \pm 4 \text{ kJ/mol}$
- Notice that this experiment give you the energy *per mole*, even though there were only *four* molecules.
- The element is placed on the periodic table!

What are all these heavy elements good for?

- The search for the heaviest elements answers questions like:
 - Q: What is the heaviest element that can be formed?
 - A: Not known.
 - Q: What mechanism is involved in their production?
 - A: The fusion of two lighter nuclei (plus some details).
 - Q: Does the periodicity of the elements continue for very high atomic numbers?
 - A: So far so good (but this could change in the future).
 - Q: What are their chemical properties?
 - A: Mostly, they are like their homologs, but we need more data.
- In summary, the study of the heaviest elements continues to influence our understanding of nuclei and the periodic table!